Issue 48, 2016

Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells

Abstract

We report the fabrication and optimization of multipass inkjet-printed perovskite solar cells. The presented process allows excellent control of crystallization dynamics and thickness of the perovskite layer. In order to obtain a homogenous perovskite film of large and densely packed crystals on a planar TiO2 electron transport layer we make use of an additional vacuum annealing step. Its beneficial impact was characterized in terms of device performance and laser beam induced current mapping as well as atomic force microscopy. The optimized fabrication methods resulted in power conversion efficiencies up to 11.3% of multipass inkjet printed perovskite solar cells. The spin coated reference devices reached 12.8% power conversion efficiency. With these first results, we advance the field of digital printing techniques for perovskites and demonstrate a major step towards highly efficient, low-cost and less Pb-waste producing perovskite solar cells.

Graphical abstract: Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2016
Accepted
13 Nov 2016
First published
14 Nov 2016

J. Mater. Chem. A, 2016,4, 19207-19213

Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells

F. Mathies, T. Abzieher, A. Hochstuhl, K. Glaser, A. Colsmann, U. W. Paetzold, G. Hernandez-Sosa, U. Lemmer and A. Quintilla, J. Mater. Chem. A, 2016, 4, 19207 DOI: 10.1039/C6TA07972E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements