Issue 44, 2016

Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors

Abstract

A novel strategy for the synthesis of high-quality ternary cobalt copper sulfide nanoparticles (NPs) anchored on nitrogen doped graphene nanosheets (Co2CuS4/NG) was developed via a one-pot solvothermal method. FE-SEM and TEM images showed that the Co2CuS4 NPs with an average size of ∼21 nm were anchored to NG nanosheets. The NG nanosheets provide a large surface area to reduce self-aggregation and confine the shape of the Co2CuS4 NPs for a highly conductive network to boost the charge transport properties of energy storage devices. Impressively, the synergetic Co2CuS4/NG composite showed a high specific capacitance of ∼1005 F g−1 at 1 A g−1, excellent rate capability (770 F g−1 at 50 A g−1), and outstanding stability (96.3% capacitance retention after 5000 cycles). The electrochemical performance of the Co2CuS4/NG composite was superior to that of monometallic CoS/NG, Cu2S/NG composite, pure Co2CuS4, and NG. An asymmetric supercapacitor device fabricated using the Co2CuS4/NG composite as the positive electrode material and NG as the negative electrode material illustrates the outstanding performance for practical energy storage devices. The asymmetric supercapacitor device delivers superb energy density (53.3 W h kg−1), high power density (∼10 936 W kg−1 at 38.4 W h kg−1), and a long-cycle life (∼4000 times).

Graphical abstract: Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2016
Accepted
17 Oct 2016
First published
17 Oct 2016

J. Mater. Chem. A, 2016,4, 17560-17571

Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors

M. Guo, J. Balamurugan, T. D. Thanh, N. H. Kim and J. H. Lee, J. Mater. Chem. A, 2016, 4, 17560 DOI: 10.1039/C6TA07400F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements