Issue 38, 2016

Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material

Abstract

Ternary blending is one of the effective strategies to broaden the complementary absorption range and smooth the energy level at the donor/acceptor interface for achieving high efficiency bulk heterojunction (BHJ) polymer solar cells (PSCs). In this study, we report efficient ternary blend all-polymer solar cells (all-PSCs) with complementary absorption bands based on two polymer donors PTB7-Th and PBDD-ff4T and one polymer acceptor N2200. The polythiophene derivative PBDD-ff4T as a hole-cascade material plays a bridging role in energy levels between PTB7-Th and N2200, and thus provides more efficient channels for charge transfer. The ternary all-PSCs with 10 wt% PBDD-ff4T content show efficient photon harvesting, enhanced charge mobility and better active layer morphology due to the induced crystallization of PTB7-Th by the inserted PBDD-ff4T in the donor domains. As a result, the device without any extra treatments exhibits an optimized power conversion efficiency (PCE) of 7.2% with an open circuit voltage (Voc) of 0.82 V, a short circuit current density (Jsc) of 15.7 mA cm−2, and a fill factor (FF) of 56%. While the PCEs are 5.9% and 4.2% for the all-PSCs based on the binary blends PTB7-Th:N2200 and PBDD-ff4T:N2200, respectively. This PCE of 7.2% is one of the highest values reported in the literature so far for ternary all-PSCs and polythiophene derivative-based all-PSCs.

Graphical abstract: Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2016
Accepted
24 Aug 2016
First published
25 Aug 2016

J. Mater. Chem. A, 2016,4, 14752-14760

Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material

W. Su, Q. Fan, X. Guo, B. Guo, W. Li, Y. Zhang, M. Zhang and Y. Li, J. Mater. Chem. A, 2016, 4, 14752 DOI: 10.1039/C6TA05932E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements