Issue 5, 2016

Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells

Abstract

In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barriers and 50 μm thick ferritic steel substrates were used. We compare different doping methods: Na-doped Mo targets (MoNa), SLG underneath the flexible substrates, NaF and KF pre-absorber synthesis evaporation (PAS) and post-deposition evaporation (PDT). Additionally, we report on the importance of the Cr barrier and back contact modification to improve solar cell performance. A remarkable enhancement in the absorber grain size and surface morphology occurred especially when using Na via MoNa and PAS. Nevertheless, preliminary experiments led to better results for MoNa doping due to a higher Na content confirmed by TOF-SIMS. K doping via PAS also showed promising results. An increase in the efficiency of solar cells from 2.2% to 4.3% was possible when using a MoNa layer sandwiched between regular Mo layers. The improvement is mainly related to a higher VOC and FF. After performing a detailed Cr and back contact optimization, a record value of 6.1% for flexible CZTSe solar cells was recently obtained using MoNa and a new surface Ge doping.

Graphical abstract: Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells

Supplementary files

Article information

Article type
Paper
Submitted
26 Nov 2015
Accepted
03 Jan 2016
First published
06 Jan 2016

J. Mater. Chem. A, 2016,4, 1895-1907

Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells

S. López-Marino, Y. Sánchez, M. Espíndola-Rodríguez, X. Alcobé, H. Xie, M. Neuschitzer, I. Becerril, S. Giraldo, M. Dimitrievska, M. Placidi, L. Fourdrinier, V. Izquierdo-Roca, A. Pérez-Rodríguez and E. Saucedo, J. Mater. Chem. A, 2016, 4, 1895 DOI: 10.1039/C5TA09640E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements