Jump to main content
Jump to site search

Issue 8, 2016
Previous Article Next Article

Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water

Author affiliations

Abstract

Ligand-free CdS quantum dots were produced by a reactive ligand stripping procedure and employed for photocatalytic H2 evolution in pH neutral solution. The rate of H2 generation of the ‘bare’ quantum dots was 175 times higher than that of the equivalent mercaptopropionic acid-capped quantum dots in the presence of a cobalt co-catalyst and Na2SO3 as a sacrificial electron donor. Under optimised conditions, a turnover number of 58 000 mol H2 per mol Co and 29 000 mol H2 per mol CdS quantum dots was achieved after 88 h of UV-free solar light irradiation (λ > 420 nm, 1 Sun intensity). Ligand removal is therefore a potent method to substantially enhance the photocatalytic performance of quantum dot systems.

Graphical abstract: Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Jun 2015, accepted on 18 Jun 2015 and first published on 19 Jun 2015


Article type: Paper
DOI: 10.1039/C5TA04136H
Citation: J. Mater. Chem. A, 2016,4, 2856-2862
  • Open access: Creative Commons BY license
  •   Request permissions

    Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water

    C. M. Chang, K. L. Orchard, B. C. M. Martindale and E. Reisner, J. Mater. Chem. A, 2016, 4, 2856
    DOI: 10.1039/C5TA04136H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements