Jump to main content
Jump to site search

Issue 2, 2016
Previous Article Next Article

Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker

Author affiliations

Abstract

We present a detailed study of self-assembled hydrogels of bundled and cross-linked networks consisting of positively charged amyloid-like nanofibers and a triblock copolymer with negatively charged end blocks as a cross-linker. In a first step small oligopeptides self-assemble into macrocycles which are held together by reversible disulfide bonds. Interactions between the peptides cause the macrocycles to assemble into nanofibers, which form a reversible hydrogel. The physical properties of the hydrogel are tuned using various methods such as control over the fibre length, addition of a cross-linking copolymer, and addition of salt. We establish a relationship between the bulk mechanical properties, the properties of the individual fibers and the hydrogel morphology using characterization techniques operating at different length scales such as rheology, atomic force microscopy (AFM) and cryo transmission electron microscopy (Cryo-TEM). This allows for a precise control of the elastic behaviour of these networks.

Graphical abstract: Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Aug 2015, accepted on 12 Oct 2015 and first published on 12 Oct 2015


Article type: Paper
DOI: 10.1039/C5SM02088C
Citation: Soft Matter, 2016,12, 432-440
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Multi-step control over self-assembled hydrogels of peptide-derived building blocks and a polymeric cross-linker

    V. D. Nguyen, A. Pal, F. Snijkers, M. Colomb-Delsuc, G. Leonetti, S. Otto and J. van der Gucht, Soft Matter, 2016, 12, 432
    DOI: 10.1039/C5SM02088C

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements