Jump to main content
Jump to site search

Issue 8, 2016
Previous Article Next Article

Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers

Author affiliations

Abstract

A new family of 2-fold interpenetrated primitive cubic (pcu) networks of formula [M(L)2(Cr2O7)]n (M = Co2+, Ni2+, Cu2+ and Zn2+; L = 4,4′-azopyridine), DICRO-3-M-i, has been synthesised and their structures, permanent porosity and gas sorption properties were comprehensively characterised. Molecular simulations indicate that CO2 molecules occupy both of the two distinct ultramicropores that run through this isostructural series. The orientation of the Cr2O72− pillars is thought to contribute to high isosteric enthalpy of adsorption (Qst) towards CO2 and temperature programmed desorption experiments reveal that DICRO-3-Ni-i selectively adsorbs CO2 from gas mixtures that simulate flue gas. Performance in this context is among the highest for physisorbents measured to date and these materials are readily regenerated at 50 °C.

Graphical abstract: Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Mar 2016, accepted on 10 May 2016 and first published on 10 May 2016


Article type: Edge Article
DOI: 10.1039/C6SC01385F
Citation: Chem. Sci., 2016,7, 5470-5476
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers

    H. S. Scott, N. Ogiwara, K. Chen, D. G. Madden, T. Pham, K. Forrest, B. Space, S. Horike, J. J. Perry IV, S. Kitagawa and M. J. Zaworotko, Chem. Sci., 2016, 7, 5470
    DOI: 10.1039/C6SC01385F

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements