Issue 1, 2017

Language of mechanisms: exam analysis reveals students' strengths, strategies, and errors when using the electron-pushing formalism (curved arrows) in new reactions

Abstract

This study investigated students' successes, strategies, and common errors in their answers to questions that involved the electron-pushing (curved arrow) formalism (EPF), part of organic chemistry's language. We analyzed students' answers to two question types on midterms and final exams: (1) draw the electron-pushing arrows of a reaction step, given the starting materials and products; and (2) draw the products of a reaction step, given the starting materials and electron-pushing arrows. For both question types, students were given unfamiliar reactions. The goal was for students to gain proficiency—or fluency—using and interpreting the EPF. By first becoming fluent, students should have lower cognitive load demands when learning subsequent concepts and reactions, positioning them to learn more deeply. Students did not typically draw reversed or illogical arrows, but there were many other error types. Scores on arrows questions were significantly higher than on products questions. Four factors correlated with lower question scores, including: compounds bearing implicit atoms, intramolecular reactions, assessment year, and the conformation of reactants drawn on the page. We found little evidence of analysis strategies such as expanding or mapping structures. We also found a new error type that we describe as picking up electrons and setting them down on a different atom. These errors revealed the difficulties that arose even before the students had to consider the chemical meaning and implications of the reactions. Herein, we describe our complete findings and suggestions for instruction, including videos that we created to teach the EPF.

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
04 Oct 2016
First published
04 Oct 2016

Chem. Educ. Res. Pract., 2017,18, 64-77

Language of mechanisms: exam analysis reveals students' strengths, strategies, and errors when using the electron-pushing formalism (curved arrows) in new reactions

A. B. Flynn and R. B. Featherstone, Chem. Educ. Res. Pract., 2017, 18, 64 DOI: 10.1039/C6RP00126B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements