Issue 95, 2016, Issue in Progress

Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules

Abstract

Brushes were prepared from a thermoresponsive strongly anionic block copolymer, namely poly(2-acrylamido-2-methylpropanesulfonic acid) (AMPS)-b-poly(N-isopropylacrylamide) (PAMPS-b-PIPAAm), by multistep atom-transfer radical polymerization with pH control of the reaction solution. The prepared block copolymer brushes were characterized using CHN elemental analysis, X-ray photoelectron spectroscopy, contact angle measurements, and zeta potential measurements. The results showed that dense polymer brushes were formed on the silica surfaces, and showed thermally modulated changes in their hydrophobic and anionic properties. Chromatographic analyses using silica beads modified with PAMPS-b-PIPAAm brushes as column-packing materials showed that the block copolymer brushes interacted more strongly with basic biomolecules than did brushes of a random copolymer, namely P(IPAAm-co-AMPS). PAMPS-b-PIPAAm copolymer brushes could therefore provide effective thermoresponsive anionic interfaces with strong anionic properties that could be modulated by changing the external temperature.

Graphical abstract: Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2016
Accepted
22 Sep 2016
First published
22 Sep 2016

RSC Adv., 2016,6, 93169-93179

Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules

K. Nagase, J. Kobayashi, A. Kikuchi, Y. Akiyama, H. Kanazawa and T. Okano, RSC Adv., 2016, 6, 93169 DOI: 10.1039/C6RA20944K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements