Issue 51, 2016, Issue in Progress

Identification of extended defect and interface related luminescence lines in polycrystalline ZnO thin films grown by sol–gel process

Abstract

The luminescence lines related to extended defects and interfaces in polycrystalline ZnO thin films grown by sol–gel process are deeply investigated by combining temperature-dependent photoluminescence and cathodoluminescence imaging with high-resolution transmission electron microscopy. A typical broad emission band is shown in the range of 3.316 to 3.333 eV and mainly consists of two distinct contributions. At high energy, a 3.333 eV line is associated with interfaces (i.e., free surfaces and grain boundaries) and predominates for small ZnO nanoparticles owing to their high density. The intensity ratio of the excitonic to interface-related transitions is low in this first configuration and the 3.333 eV line is characterized by an activation energy of 12.0 ± 1.2 meV and a Huang-Rhys factor of 0.54 ± 0.05 at 12 K. At low energy, a 3.316 eV line is attributed to basal plane stacking faults that are mostly of I1-type and prevail for large ZnO nanoparticles. The 3.316 eV line is characterized by an activation energy of 6.7 ± 0.8 meV and a Huang Rhys constant of 0.87 ± 0.03 at 12 K. Basal plane stacking faults are most likely formed as the coalescence process proceeds with the decomposition and crystallization processes during annealing. As shown by low-temperature monochromatic cathodoluminescence imaging, the luminescence corresponding to the 3.316 eV line is, in this second configuration, limited to some specific area (i.e., large nanoparticles), and the relative intensity ratio of the excitonic to interface-related transitions is increased due to the smaller free surface area and density of grain boundaries.

Graphical abstract: Identification of extended defect and interface related luminescence lines in polycrystalline ZnO thin films grown by sol–gel process

Article information

Article type
Paper
Submitted
21 Feb 2016
Accepted
27 Apr 2016
First published
28 Apr 2016

RSC Adv., 2016,6, 44987-44992

Identification of extended defect and interface related luminescence lines in polycrystalline ZnO thin films grown by sol–gel process

S. Guillemin, V. Consonni, L. Rapenne, E. Sarigiannidou, F. Donatini and G. Bremond, RSC Adv., 2016, 6, 44987 DOI: 10.1039/C6RA04634G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements