Jump to main content
Jump to site search

Issue 5, 2016
Previous Article Next Article

Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis

Author affiliations

Abstract

A series of metal–organic gels (MOG-Rh-1a–d) are synthesized by the reaction of dirhodium(II) tetraacetate (Rh2(OAc)4) and the tricarboxylic acid 4,4′,4′′-[1,3,5-benzenetriyltris(carbonylimino)]tristribenzoic acid (H3btctb) in DMF/water or DMF/methanol. After drying with subcritical carbon dioxide, metal–organic aerogels (MOA-Rh-1a–d) were obtained and fully characterized by EA, SEM, TEM, TGA, PXRD, UV-vis, XPS and EXAFS measurements. The presence of dinuclear rhodium paddle-wheel units and the Rh2+ valence in the aerogels are proven by UV-vis, XAS and XPS spectra. As revealed by the SEM and TEM images, the aerogels have a general porous structure with an entangled worm-like morphology. The porosity of the aerogels is confirmed by nitrogen adsorption at 77 K, and the sorption isotherms present type-IV curves, indicating that both micro- and meso-porosities are present. The accessibility of the mesopores is verified by dye uptake such as methylene blue (MB, 14.4 × 6.1 Å2) and Coomassie brilliant blue R-250 (BBR-250, 22 × 18 Å2). The catalytic tests disclose that MOA-Rh-1d is effective in the coupling reaction of CO2 and epoxides as well as intramolecular C–H amination of vinyl azides. MOA-Rh-1d can be recycled easily and used for at least ten runs with yields in the range of 91–98% in CO2 conversion reactions.

Graphical abstract: Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Dec 2015, accepted on 16 Feb 2016 and first published on 18 Feb 2016


Article type: Research Article
DOI: 10.1039/C5QI00272A
Author version available: Download Author version (PDF)
Citation: Inorg. Chem. Front., 2016,3, 702-710
  •   Request permissions

    Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis

    B. Zhu, G. Liu, L. Chen, L. Qiu, L. Chen, J. Zhang, L. Zhang, M. Barboiu, R. Si and C. Su, Inorg. Chem. Front., 2016, 3, 702
    DOI: 10.1039/C5QI00272A

Search articles by author

Spotlight

Advertisements