Jump to main content
Jump to site search

Issue 12, 2016
Previous Article Next Article

Fabrication and morphology tuning of graphene oxide nanoscrolls

Author affiliations

Abstract

Here we report the synthesis of graphene oxide nanoscrolls (GONS) with tunable dimensions via low and high frequency ultrasound solution processing techniques. GONS can be visualized as a graphene oxide (GO) sheet rolled into a spiral-wound structure and represent an alternative to traditional carbon nano-morphologies. The scrolling process is initiated by the ultrasound treatment which provides the scrolling activation energy for the formation of GONS. The GO and GONS dimensions are observed to be a function of ultrasound frequency, power density, and irradiation time. Ultrasonication increases GO and GONS C–C bonding likely due to in situ thermal reduction at the cavitating bubble–water interface. The GO area and GONS length are governed by two mechanisms; rapid oxygen defect site cleavage and slow cavitation mediated scission. Structural characterization indicates that GONS with tube and cone geometries can be formed with both narrow and wide dimensions in an industrial-scale time window. This work paves the way for GONS implementation for a variety of applications such as adsorptive and capacitive processes.

Graphical abstract: Fabrication and morphology tuning of graphene oxide nanoscrolls

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Nov 2015, accepted on 22 Feb 2016 and first published on 23 Feb 2016


Article type: Paper
DOI: 10.1039/C5NR07983G
Citation: Nanoscale, 2016,8, 6783-6791
  • Open access: Creative Commons BY license
  •   Request permissions

    Fabrication and morphology tuning of graphene oxide nanoscrolls

    C. A. Amadei, I. Y. Stein, G. J. Silverberg, B. L. Wardle and C. D. Vecitis, Nanoscale, 2016, 8, 6783
    DOI: 10.1039/C5NR07983G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements