Issue 12, 2016

Water-soluble naphthalimide-based ‘Pourbaix sensors’: pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer

Abstract

Two novel naphthalimide-based ‘Pourbaix sensors’ for redox potential and pH were designed based on a ‘fluorophore–spacer1–receptor–spacer2–electron-donor’ configuration. The synthesised molecular logic gates consist of an alkylated 1,8-naphthalimide fluorophore connected to a tertiary amine by a flexible ethylene spacer to a ferrocene moiety via a methylene spacer. The UV-visible absorption and steady state fluorescent properties were examined in methanol and 1 : 1 (v/v) methanol/water. The spectroscopic properties are modulated by internal charge transfer (ICT) and photoinduced electron transfer (PET) mechanisms. A log βH+ of 9.2 and 8.7 were determined in 1 : 1 (v/v) methanol/water for the methylated 1 and butylated 2 compounds, respectively. An apparent log βFe3+ of 4.2 was determined in 1 : 1 (v/v) methanol/water at pH 4. Time-resolved spectroscopic studies elucidated the stimulus-modulated photoinduced electron transfer pathways. In the oxidised and protonated state, 1 exhibits a single fluorescence lifetime of 8.5 ns, while an efficient photoinduced electron transfer characterised by a time constant of 20 ps is revealed by femtosecond transient absorption spectroscopy in the absence of a perturbing stimulus.

Graphical abstract: Water-soluble naphthalimide-based ‘Pourbaix sensors’: pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2016
Accepted
22 Aug 2016
First published
30 Aug 2016

New J. Chem., 2016,40, 9917-9922

Water-soluble naphthalimide-based ‘Pourbaix sensors’: pH and redox-activated fluorescent AND logic gates based on photoinduced electron transfer

A. D. Johnson, K. A. Paterson, J. C. Spiteri, S. A. Denisov, G. Jonusauskas, A. Tron, N. D. McClenaghan and D. C. Magri, New J. Chem., 2016, 40, 9917 DOI: 10.1039/C6NJ02023B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements