Issue 10, 2016

Selective modification of the metal coordination environment in heavy alkaline–earth iodide complexes

Abstract

A series of heavy alkaline–earth (Ae) iodide coordination compounds is reported that contains various neutral donor ligands, including triphenylphosphine oxide (OPPh3), tri-n-propylphosphine oxide (OPPr3), tetraethyl urea (TEU), dimethylpropylene urea (DMPU), and the nitrosobenzene dimer ([ONPh]2). Phosphine oxides can displace iodide from calcium or barium in coordination complexes, sometimes displaying cooperative binding and/or generating cationic species of the general formula [AeIm(OPR3)6−(m+p)(THF)p](2−m)+. In particular, despite the nonstoichiometric ratio of the reagents, 2 equiv. of OPPh3 react with CaI2 in THF to generate CaI2(OPPh3)3(THF) (1), although the use of 4 equiv. will produce the expected CaI2(OPPh3)4 (2). With CaI2 and 5 equiv. of tri(n-propyl)phosphine oxide, the cationic species [CaI(OPPr3)5]I (3) is formed. With 4 equiv. of OPPh3 and BaI2 in THF, the cation [BaI(OPPh3)5]I (4) is generated. For comparative purposes, the ureas tetraethylurea (TEU) and N,N′-dimethylpropylene urea (DMPU) were used to form the complexes CaI2(TEU)4 (5) and CaI2(DMPU)6 (6). Nitrosobenzene reacts with CaI2 in THF to form CaI2(O2N2Ph2)2(THF)2, which in the presence of trace amounts of water is converted to the hydrogen-bonded [Ca(O2N2Ph2)(H2O)2(THF)3]I2 (7). Crystal structures are reported for 3–5 and 7; the latter is the first for the nitrosobenzene dimer in a main group complex.

Graphical abstract: Selective modification of the metal coordination environment in heavy alkaline–earth iodide complexes

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2016
Accepted
26 Jul 2016
First published
26 Jul 2016

New J. Chem., 2016,40, 8229-8238

Selective modification of the metal coordination environment in heavy alkaline–earth iodide complexes

L. S. Fitts, E. J. Bierschenk, T. P. Hanusa, A. L. Rheingold, M. Pink and V. G. Young, New J. Chem., 2016, 40, 8229 DOI: 10.1039/C6NJ01713D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements