Jump to main content
Jump to site search

Issue 11, 2016
Previous Article Next Article

Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template

Author affiliations

Abstract

Efficient utilization of cellulose is of scientific significance and a great challenge for both fundamental and industrial studies. Herein, we synthesized MesoZSM-5 zeolites by using nanocrystalline cellulose as a template for the first time, and reported the exciting performance of the corresponding non-noble metal catalysts (Ni/MesoZSM-5) for efficient conversion of cellulose to hexitols. By modulating the ratio of the template to precursor, MesoZSM-5 supports were produced with tunable pore structure and acidic sites. With the cooperation of active Ni sites and acidic sites of MesoZSM-5, hexitols were obtained with a high yield of around 60% in the direct conversion of commercial microcrystalline cellulose (MCC). The corresponding correlation between the structural characteristics and catalytic performance was established. This work provides a new approach for efficient utilization of cellulose, as well as gives rise to a sustainable templating method for the synthesis of mesoporous zeolites.

Graphical abstract: Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Dec 2015, accepted on 17 Feb 2016 and first published on 17 Feb 2016


Article type: Paper
DOI: 10.1039/C5GC03077C
Citation: Green Chem., 2016,18, 3315-3323
  •   Request permissions

    Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template

    B. Zhang, X. Li, Q. Wu, C. Zhang, Y. Yu, M. Lan, X. Wei, Z. Ying, T. Liu, G. Liang and F. Zhao, Green Chem., 2016, 18, 3315
    DOI: 10.1039/C5GC03077C

Search articles by author

Spotlight

Advertisements