Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2016
Previous Article Next Article

Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries

Author affiliations

Abstract

Agarose, which is one of the natural polysaccharides that is generally extracted from seaweed, has recently attracted great attention as an environmentally-benign building element for a wide variety of applications. Notably, its disaccharide repeating units bearing ether/hydroxyl groups carry unprecedented performance benefits far beyond those accessible with traditional synthetic polymers. Herein, intrigued by these unusual chemical features of agarose, we explore its potential applicability as an alternative electrode binder and also as a carbon source for high-performance rechargeable lithium-ion batteries. The agarose binder enables silicon (Si) active materials to be tightly adhered to copper foil current collectors, thereby providing significant improvement in the electrochemical performance of the resulting Si anode (specific capacity = 2000 mA h g−1 and capacity retention after 200 cycles = 71%). In addition, agarose can be exploited as a cathode binder. An LiMn2O4 cathode containing agarose binder shows an excellent cell performance (initial coulombic efficiency of ∼96.2% and capacity retention after 400 cycles of ∼100%). Through the selective carbonization of Si-dispersed agarose, Si/C (hard carbon) composite active materials are successfully synthesized. Eventually, the Si/C composite anode and the LiMn2O4 cathode mentioned above are assembled to produce a full cell featuring the use of agarose as an alternative green material. Benefiting from the exceptional multifunctionality of agarose, the full cell presents a stable cycling performance (capacity retention after 50 cycles of >87%).

Graphical abstract: Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 05 Nov 2015, accepted on 04 Jan 2016 and first published on 04 Jan 2016


Article type: Paper
DOI: 10.1039/C5GC02654G
Citation: Green Chem., 2016,18, 2710-2716
  •   Request permissions

    Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries

    G. Hwang, J. Kim, D. Hong, C. Kim, N. Choi, S. Lee and S. Park, Green Chem., 2016, 18, 2710
    DOI: 10.1039/C5GC02654G

Search articles by author