Jump to main content
Jump to site search

Volume 188, 2016
Previous Article Next Article

Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde

Author affiliations

Abstract

The performance of Mo-enriched, bulk ferric molybdate, employed commercially for the industrially important reaction of the selective oxidation of methanol to formaldehyde, is limited by a low surface area, typically 5–8 m2 g−1. Recent advances in the understanding of the iron molybdate catalyst have focused on the study of MoOx@Fe2O3 (MoOx shell, Fe2O3 core) systems, where only a few overlayers of Mo are present on the surface. This method of preparing MoOx@Fe2O3 catalysts was shown to support an iron molybdate surface of higher surface area than the industrially-favoured bulk phase. In this research, a MoOx@Fe2O3 catalyst of even higher surface area was stabilised by modifying a haematite support containing 5 wt% Al dopant. The addition of Al was an important factor for stabilising the haematite surface area and resulted in an iron molybdate surface area of ∼35 m2 g−1, around a 5 fold increase on the bulk catalyst. XPS confirmed Mo surface-enrichment, whilst Mo XANES resolved an amorphous MoOx surface monolayer supported on a sublayer of Fe2(MoO4)3 that became increasingly extensive with initial Mo surface loading. The high surface area MoOx@Fe2O3 catalyst proved amenable to bulk characterisation techniques; contributions from Fe2(MoO4)3 were detectable by Raman, XAFS, ATR-IR and XRD spectroscopies. The temperature-programmed pulsed flow reaction of methanol showed that this novel, high surface area catalyst (3ML-HSA) outperformed the undoped analogue (3ML-ISA), and a peak yield of 94% formaldehyde was obtained at ∼40 °C below that for the bulk Fe2(MoO4)3 phase. This work demonstrates how core–shell, multi-component oxides offer new routes for improving catalytic performance and understanding catalytic activity.

Back to tab navigation

Publication details

The article was received on 04 Nov 2015, accepted on 08 Dec 2015 and first published on 08 Dec 2015


Article type: Paper
DOI: 10.1039/C5FD00153F
Citation: Faraday Discuss., 2016,188, 115-129
  • Open access: Creative Commons BY license
  •   Request permissions

    Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde

    S. Chapman, C. Brookes, M. Bowker, E. K. Gibson and P. P. Wells, Faraday Discuss., 2016, 188, 115
    DOI: 10.1039/C5FD00153F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements