Issue 11, 2016

High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening

Abstract

Semiconductors with converging multiple electronic valleys and soft chemical bonds are ideal for high-performance thermoelectrics. Narrow gap Bi2Se3 is a well-known three-dimensional topological insulator with non-trivial surface states, while possessing low thermoelectric properties due to its single-degenerate band conduction, despite being an important constituent of highly efficient n-type thermoelectric Bi2(Te,Se)3. Here we demonstrate that in Te-free Bi2−xSbxSe3 converging multiple electronic band valleys and strengthening phonon scattering can be realized simultaneously via a composition-induced (Sb-alloying) structural transition from a rhombohedral phase to an orthorhombic phase. The accompanying chemical bond softening and structural distortion cause significant modifications to the electronic band structure and phonon dispersion. The convergence of heavy bands realized in the orthorhombic phase (x ≥ 1.0) largely increases the electron density of states effective mass, and thus gives rise to a high Seebeck coefficient of ∼−280 μV K−1 at 800 K. Meanwhile, phonon softening and substantial lattice anharmonicity pertain to weak interchain interactions considerably block the heat-carrying acoustic phonons, resulting in ultralow lattice thermal conductivities of ∼0.6 W m−1 K−1 at 300 K and ∼0.3 W m−1 K−1 at 800 K. Consequently, a maximum thermoelectric figure of merit ZT of ∼1.0 can be achieved for n-type BiSbSe3, about three times higher than that of the optimized Bi2Se3. The moderately high ZT of Te-free BiSbSe3 makes it a promising candidate for low-mid temperature power generations. Furthermore, the concept of structural transition driven band convergence and chemical bond softening can be applied to improve the thermoelectric properties of other materials and may also shed light on identifying new materials.

Graphical abstract: High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2016
Accepted
26 Sep 2016
First published
26 Sep 2016

Energy Environ. Sci., 2016,9, 3436-3447

High thermoelectric performance in Te-free (Bi,Sb)2Se3via structural transition induced band convergence and chemical bond softening

S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang and J. Yang, Energy Environ. Sci., 2016, 9, 3436 DOI: 10.1039/C6EE02674E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements