Issue 5, 2016

A low-dissipation, pumpless, gravity-induced flow battery

Abstract

Redox flow batteries have the potential to provide low-cost energy storage to enable renewable energy technologies such as wind and solar to overcome their inherent intermittency and to improve the efficiency of electric grids. Conventional flow batteries are complex electromechanical systems designed to simultaneously control flow of redox active fluids and perform electrochemical functions. With the advent of redox active fluids with high capacity density, i.e., Faradaic capacity significantly exceeding the 1–2 M concentration equivalents typical of aqueous redox flow batteries, new flow battery designs become of interest. Here, we design and demonstrate a proof-of-concept prototype for a “gravity-induced flow cell” (GIFcell), representing one of a family of approaches to simpler, more robust, passively driven, lower-cost flow battery architectures. Such designs are particularly appropriate for semi-solid electrodes comprising suspensions of networked conductors and/or electroactive particles, due to their low energy dissipation during flow. Accordingly, we demonstrate the GIFcell using nonaqueous lithium polysulfide solutions containing a nanoscale carbon network in a half-flow-cell configuration and achieve round trip energy efficiency as high as 91%.

Graphical abstract: A low-dissipation, pumpless, gravity-induced flow battery

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2016
Accepted
05 Apr 2016
First published
11 Apr 2016

Energy Environ. Sci., 2016,9, 1760-1770

A low-dissipation, pumpless, gravity-induced flow battery

X. Chen, B. J. Hopkins, A. Helal, F. Y. Fan, K. C. Smith, Z. Li, A. H. Slocum, G. H. McKinley, W. C. Carter and Y. Chiang, Energy Environ. Sci., 2016, 9, 1760 DOI: 10.1039/C6EE00874G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements