Jump to main content
Jump to site search

Issue 5, 2016
Previous Article Next Article

Mass transport aspects of electrochemical solar-hydrogen generation

Author affiliations

Abstract

The conception of practical solar-hydrogen generators requires the implementation of engineering design principles that allow photo-electrochemical material systems to operate efficiently, continuously and stably over their lifetime. At the heart of these engineering aspects lie the mass transport of reactants, intermediates and products throughout the device. This review comprehensively covers these aspects and ties together all of the processes required for the efficient production of pure streams of solar-hydrogen. In order to do so, the article describes the fundamental physical processes that occur at different locations of a generalized device topology and presents the state-of-the-art advances in materials and engineering approaches to mitigate mass-transport challenges. Processes that take place in the light absorber and electrocatalyst components are only briefly described, while the main focus is given to mass transport processes in the boundary-layer and bulk liquid or solid electrolytes. Lastly, a perspective on how engineering approaches can enable more efficient solar-fuel generators is presented.

Graphical abstract: Mass transport aspects of electrochemical solar-hydrogen generation

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 08 Dec 2015, accepted on 01 Mar 2016 and first published on 02 Mar 2016


Article type: Review Article
DOI: 10.1039/C5EE03698D
Citation: Energy Environ. Sci., 2016,9, 1533-1551
  •   Request permissions

    Mass transport aspects of electrochemical solar-hydrogen generation

    M. A. Modestino, S. M. H. Hashemi and S. Haussener, Energy Environ. Sci., 2016, 9, 1533
    DOI: 10.1039/C5EE03698D

Search articles by author