Jump to main content
Jump to site search

Issue 2, 2016
Previous Article Next Article

Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation

Author affiliations

Abstract

With one billion tons of methane produced annually by microorganisms, biogas production can be appreciated both for its role in global organic matter turnover and as an energy source for humankind. The importance of electron transfer from electrically conductive surfaces or from bacteria to methanogenic Archaea has been implicated in widespread commercial anaerobic digestion processes, though a mechanism for reception of electrons from conductive surfaces or pili by methanogens has never been demonstrated. Here we describe a novel crystalline form of the synthetic phenazine neutral red that harvests electrons from reduced inorganic and organic microbial sources in anaerobic environments and makes them available to methanogenic Archaea. The novel crystalline form is so effective at harvesting reducing equivalents because it displays a potential for reduction 444 mV higher than the soluble form (E′ = 70 mV). Neutral red molecules solubilised in the reduced state by protonation at the point of methanogen cell contact with the crystal surface deliver electrons to methanogens at a negative midpoint potential (E′ = −375 mV). We demonstrate that soluble neutral red delivers reducing equivalents directly to the membrane bound HdrED heterodisulfide reductase of Methanosarcina, replenishing the CoM-SH and CoB-SH pool for methanogenesis and generating proton motive force. An order of magnitude increase in methane production is recorded in pure acetate fed Methanosarcina and coal and food waste fed mixed cultures in the laboratory. The phenomenon is also demonstrated at field scale in a sub-bituminous coal seam 80 m below ground level.

Graphical abstract: Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Oct 2015, accepted on 16 Dec 2015 and first published on 16 Dec 2015


Article type: Paper
DOI: 10.1039/C5EE03085D
Citation: Energy Environ. Sci., 2016,9, 644-655
  • Open access: Creative Commons BY license
  •   Request permissions

    Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation

    S. Beckmann, C. Welte, X. Li, Y. M. Oo, L. Kroeninger, Y. Heo, M. Zhang, D. Ribeiro, M. Lee, M. Bhadbhade, C. E. Marjo, J. Seidel, U. Deppenmeier and M. Manefield, Energy Environ. Sci., 2016, 9, 644
    DOI: 10.1039/C5EE03085D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements