Jump to main content
Jump to site search

Issue 2, 2016
Previous Article Next Article

A colloidoscope of colloid-based porous materials and their uses

Author affiliations

Abstract

Nature evolved a variety of hierarchical structures that produce sophisticated functions. Inspired by these natural materials, colloidal self-assembly provides a convenient way to produce structures from simple building blocks with a variety of complex functions beyond those found in nature. In particular, colloid-based porous materials (CBPM) can be made from a wide variety of materials. The internal structure of CBPM also has several key attributes, namely porosity on a sub-micrometer length scale, interconnectivity of these pores, and a controllable degree of order. The combination of structure and composition allow CBPM to attain properties important for modern applications such as photonic inks, colorimetric sensors, self-cleaning surfaces, water purification systems, or batteries. This review summarizes recent developments in the field of CBPM, including principles for their design, fabrication, and applications, with a particular focus on structural features and materials' properties that enable these applications. We begin with a short introduction to the wide variety of patterns that can be generated by colloidal self-assembly and templating processes. We then discuss different applications of such structures, focusing on optics, wetting, sensing, catalysis, and electrodes. Different fields of applications require different properties, yet the modularity of the assembly process of CBPM provides a high degree of tunability and tailorability in composition and structure. We examine the significance of properties such as structure, composition, and degree of order on the materials' functions and use, as well as trends in and future directions for the development of CBPM.

Graphical abstract: A colloidoscope of colloid-based porous materials and their uses

Back to tab navigation

Publication details

The article was received on 07 Jul 2015 and first published on 23 Sep 2015


Article type: Review Article
DOI: 10.1039/C5CS00533G
Citation: Chem. Soc. Rev., 2016,45, 281-322
  •   Request permissions

    A colloidoscope of colloid-based porous materials and their uses

    K. R. Phillips, G. T. England, S. Sunny, E. Shirman, T. Shirman, N. Vogel and J. Aizenberg, Chem. Soc. Rev., 2016, 45, 281
    DOI: 10.1039/C5CS00533G

Search articles by author

Spotlight

Advertisements