Issue 38, 2016

Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects

Abstract

We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H+(H2O)5, and its fully deuterated isotopologue, D+(D2O)5, over nearly the complete infrared spectral range (220–4000 cm−1) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR–IR double-resonance measurements on the H+(H2O)5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933–4941〉. The evolution of the persistent bands in the D+(D2O)5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398–1410〉. This pattern persists in the vibrational spectra of H+(H2O)5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.

Graphical abstract: Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2016
Accepted
22 Aug 2016
First published
23 Aug 2016
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2016,18, 26743-26754

Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects

M. R. Fagiani, H. Knorke, T. K. Esser, N. Heine, C. T. Wolke, S. Gewinner, W. Schöllkopf, M. Gaigeot, R. Spezia, M. A. Johnson and K. R. Asmis, Phys. Chem. Chem. Phys., 2016, 18, 26743 DOI: 10.1039/C6CP05217G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements