Jump to main content
Jump to site search

Issue 30, 2016
Previous Article Next Article

Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations

Author affiliations

Abstract

How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients – down to 100 K over one metre – can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.

Graphical abstract: Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Jan 2016, accepted on 03 May 2016 and first published on 06 May 2016


Article type: Paper
DOI: 10.1039/C6CP00577B
Citation: Phys. Chem. Chem. Phys., 2016,18, 20153-20159
  • Open access: Creative Commons BY license
  •   Request permissions

    Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations

    L. Keil, M. Hartmann, S. Lanzmich and D. Braun, Phys. Chem. Chem. Phys., 2016, 18, 20153
    DOI: 10.1039/C6CP00577B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements