Issue 43, 2015

Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays

Abstract

The low-cost growth of patterned zinc oxide (ZnO) nanorod arrays (NAs) has attracted much attention with the rapid development of electronics and nanotechnology. A mechanoelectrospinning-assisted continuous hydrothermal synthesis method (MES-CHSM) is proposed to direct-write the precursor patterns for the growth of the ZnO-NAs, in a digital, low-cost, and mask-free manner. The morphology and distribution of the hierarchical ZnO nanorods, having a tremendous impact on the gas response, are determined by the process parameters of the MES-CHSM. It is highly desirable that the diameter, interval, orientation and distribution of the ZnO nanorods can be tuned proactively by changing the growth time, the solution concentration, the nature of the precursor layer, and the pattern by MES. The ZnO-NAs exert excellent Ohmic contact with interdigital electrodes when exposed to dry air, NO2 gas and then dry air again. The gas response of the ZnO sample is surface-reaction-determining. The gas sensing results show highly sensitive and repeatable response–recovery cycles following NO2 gas exposure and air purging, respectively. The dynamic response of the gas sensor shows a temperature-dependent response to NO2, even at low concentrations (1–50 ppm). The best gas response is located between 200 °C and 225 °C. Gas sensors, prepared by different process parameters, show two laws regarding the corresponding responses and the NO2 concentrations: approximately linear and saturation regions. The optimal process parameters are presented to postpone the occurrence of the saturation region, to enlarge the measuring range.

Graphical abstract: Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2015
Accepted
29 Sep 2015
First published
30 Sep 2015

J. Mater. Chem. C, 2015,3, 11397-11405

Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays

X. Wang, F. Sun, Y. Duan, Z. Yin, W. Luo, Y. Huang and J. Chen, J. Mater. Chem. C, 2015, 3, 11397 DOI: 10.1039/C5TC02187A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements