Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 17, 2015
Previous Article Next Article

Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives

Author affiliations

Abstract

We developed a facile and quantitative method to improve the electron transport properties and resulting device performances of perovskite solar cells based on post-incorporation of various acetylacetonate additives. Previous studies rely on synthesis or soaking processes with limited additive control. Here, our acetylacetonated-based additives are used as effective intermediate gels to interact with TiO2 nanocrystals using a simple approach. The incorporation process can be controlled effectively and quantitatively using a range of additives from divalent (II), trivalent (III), and tetravalent (IV) to hexavalent (VI) acetylacetonate. Electronic parameters of solar cell devices, such as short circuit current (Jsc) and fill factor (FF), are enhanced, regardless of the different valencies of the additives. Zirconium(IV) acetylacetonate was found to be the most effective additive, with average PCE improved from 15.0% to 15.8%. Detailed characterization experiments including transient photoluminescence spectra, ultra-violet photoelectron spectroscopy, photovoltage decay, and photocurrent decay indicate an improved interface with improved carrier extraction originating from the TiO2 modification.

Graphical abstract: Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 24 Nov 2014, accepted on 26 Feb 2015 and first published on 02 Mar 2015


Article type: Communication
DOI: 10.1039/C4TA06394E
Citation: J. Mater. Chem. A, 2015,3, 9108-9115
  •   Request permissions

    Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives

    H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T. Song, H. Chen and Y. Yang, J. Mater. Chem. A, 2015, 3, 9108
    DOI: 10.1039/C4TA06394E

Search articles by author