Issue 3, 2015

Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales

Abstract

Bicontinuous cubic structures offer enormous potential in applications ranging from protein crystallisation to drug delivery systems and have been observed in cellular membrane structures. One of the current bottlenecks in understanding and exploiting these structures is that cubic scaffolds produced in vitro are considerably smaller in size than those observed in biological systems, differing by almost an order of magnitude in some cases. We have addressed this technological bottleneck and developed a methodology capable of manufacturing highly swollen bicontinuous cubic membranes with length scales approaching those seen in vivo. Crucially, these cubic systems do not require the presence of proteins. We have generated highly swollen Im3m symmetry bicontinuous cubic phases with lattice parameters of up to 480 Å, composed of ternary mixtures of monoolein, cholesterol and negatively charged lipid (DOPS or DOPG) and we have been able to tune their lattice parameters. The swollen cubic phases are highly sensitive to both temperature and pressure; these structural changes are likely to be controlled by a fine balance between lipid headgroup repulsions and lateral pressure in the hydrocarbon chain region.

Graphical abstract: Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2014
Accepted
18 Nov 2014
First published
28 Nov 2014
This article is Open Access
Creative Commons BY license

Soft Matter, 2015,11, 600-607

Temperature and pressure tuneable swollen bicontinuous cubic phases approaching nature's length scales

H. M. G. Barriga, A. I. I. Tyler, N. L. C. McCarthy, E. S. Parsons, O. Ces, R. V. Law, J. M. Seddon and N. J. Brooks, Soft Matter, 2015, 11, 600 DOI: 10.1039/C4SM02343A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements