Jump to main content
Jump to site search

Issue 1, 2015
Previous Article Next Article

Sequential phase transformation of propeller-like C3-symmetric liquid crystals from a helical to ordered to disordered hexagonal columnar structure

Author affiliations

Abstract

In this paper, we report thermally induced intercolumnar phase transitions of C3-symmetric liquid crystals (LCs) bearing a triazole-based propeller-like aromatic mesogen. Since the constituting aromatic rings are conjugated through rotatable single bonds, the mesogenic shape is tuneable depending on the degree of conformational motion. Molecule 1 with ninefold octyl peripheries shows a hexagonal columnar liquid crystalline phase transition from ordered mesogenic stacking to disordered mesogenic stacking upon heating. On the other hand, molecule 2 with sixfold octyl peripheries displays a helical hexagonal columnar phase with the P6/mmm space group at ambient temperature as well as the ordered and disordered hexagonal columnar phases at higher temperatures. The intracolumnar helical order can be understood by an interdigitated stacking of the propeller-like mesogens along the columnar axis and the optimized space-filling. Notably, all the intercolumnar phase transformations in this study are revealed as second-order transitions. The thermodynamic nature agrees well with the fact that the conformational motions of the C3-symmetric aromatic mesogen change abruptly with each columnar transition.

Graphical abstract: Sequential phase transformation of propeller-like C3-symmetric liquid crystals from a helical to ordered to disordered hexagonal columnar structure

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Sep 2014, accepted on 21 Oct 2014 and first published on 22 Oct 2014


Article type: Paper
DOI: 10.1039/C4SM02004A
Citation: Soft Matter, 2015,11, 94-101
  •   Request permissions

    Sequential phase transformation of propeller-like C3-symmetric liquid crystals from a helical to ordered to disordered hexagonal columnar structure

    S. Park and B. Cho, Soft Matter, 2015, 11, 94
    DOI: 10.1039/C4SM02004A

Search articles by author

Spotlight

Advertisements