Jump to main content
Jump to site search

Issue 81, 2015
Previous Article Next Article

Surface-dependence of interfacial binding strength between zinc oxide and graphene

Author affiliations

Abstract

There is an increasing interest in hybrid materials with impacts such as improving structural integrity of known and commonly used materials. Recent experiments have suggested that the adhesion of zinc oxide (ZnO) nanowires with carbon fibers can significantly improve interfacial shear and tensile strength of fiber reinforced polymer composites. We have carried out a systematic study of the interaction between ZnO and graphene based on density functional theory, with a focus on the effect of the surface orientation and termination of ZnO. The interaction has been explored through varying both the orientation and binding sites of the interacting surfaces. The calculated binding strength shows a strong dependence on the surface orientation and termination of ZnO, which can be explained from the difference in electronegativity of Zn and O, and the induced charge redistribution owing to the in-plane and out-of-plane dipole moment of the oxide surface.

Graphical abstract: Surface-dependence of interfacial binding strength between zinc oxide and graphene

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jul 2015, accepted on 24 Jul 2015 and first published on 24 Jul 2015


Article type: Paper
DOI: 10.1039/C5RA13048D
Author version available: Download Author version (PDF)
Citation: RSC Adv., 2015,5, 65719-65724
  •   Request permissions

    Surface-dependence of interfacial binding strength between zinc oxide and graphene

    K. Larson, A. Clark, A. Appel, Q. Dai, H. He and S. Zygmunt, RSC Adv., 2015, 5, 65719
    DOI: 10.1039/C5RA13048D

Search articles by author

Spotlight

Advertisements