Issue 44, 2015

One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging

Abstract

Small-molecule-protected silver nanoclusters have smaller hydrodynamic diameter, and thus may hold greater potential in biomedicine application compared with the same core-sized, macromolecule (i.e. DNA)-protected silver nanoclusters. However, the live cell imaging labeled by small-molecule-protected silver nanoclusters has not been reported until now, and the synthesis and atom-precise characterization of silver nanoclusters have been challenging for a long time. We develop a one-pot one-cluster synthesis method to prepare silver nanoclusters capped with GSH which is bio-compatible. The as-prepared silver nanoclusters are identified to be Ag14(SG)11 (abbreviated as Ag14, SG: glutathione) by isotope-resolvable ESI-MS. The structure is probed by 1D NMR spectroscopy together with 2D COSY and HSQC. This cluster species is fluorescent and the fluorescence quantum yield is solvent-dependent. Very importantly, Ag14 was successfully applied to label lung cancer cells (A549) for imaging, and this work represents the first attempt to image live cells with small-molecule-protected silver nanoclusters. Furthermore, it is revealed that the Ag14 nanoclusters exhibit lower cytotoxicity compared with some other silver species (including silver salt, silver complex and large silver nanoparticles), and the explanation is also provided. The comparison of silver nanoclusters to state-of-the-art labeling materials in terms of cytotoxicity and photobleaching lifetime is also conducted.

Graphical abstract: One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging

Associated articles

Supplementary files

Article information

Article type
Communication
Submitted
17 Sep 2015
Accepted
12 Oct 2015
First published
13 Oct 2015

Nanoscale, 2015,7, 18464-18470

Author version available

One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging

J. Yang, N. Xia, X. Wang, X. Liu, A. Xu, Z. Wu and Z. Luo, Nanoscale, 2015, 7, 18464 DOI: 10.1039/C5NR06421J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements