Jump to main content
Jump to site search

Issue 21, 2015
Previous Article Next Article

Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

Author affiliations

Abstract

Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm−1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal–nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.

Graphical abstract: Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Feb 2015, accepted on 27 Apr 2015 and first published on 28 Apr 2015


Article type: Paper
DOI: 10.1039/C5NR01277E
Author version
available:
Download author version (PDF)
Citation: Nanoscale, 2015,7, 9545-9551
  • Open access: Creative Commons BY license
  •   Request permissions

    Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    R. D. Rodriguez, E. Sheremet, T. Deckert-Gaudig, C. Chaneac, M. Hietschold, V. Deckert and D. R. T. Zahn, Nanoscale, 2015, 7, 9545
    DOI: 10.1039/C5NR01277E

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements