Issue 1, 2016

The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures

Abstract

Novel, visible light-induced, Zn-doped BiOBr hierarchical nanostructures were successfully prepared by solvothermal methods. The photocatalytic activity of the samples was evaluated using RhB as the target pollutant. The Zn-doped BiOBr hierarchical nanostructures exhibited significantly enhanced visible light-induced photocatalytic efficiency for the degradation of RhB compared with pure BiOBr. The Zn-doped BiOBr with RZn = 0.1 (RZn is defined as the atomic ratio of Zn to Bi) showed the highest photocatalytic activity with decolorization efficiency of almost 100% after 15 min. The enhanced photocatalytic ability could be attributed to the efficient separation of photogenerated electron–hole pairs. Moreover, the role of the active species was also evaluated by adding different scavengers during the photodegradation of RhB. A possible mechanism for the enhancement of visible light performance of Zn-doped BiOBr photocatalysts was also proposed on basis of the experimental results.

Graphical abstract: The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures

Article information

Article type
Paper
Submitted
23 May 2015
Accepted
07 Oct 2015
First published
12 Oct 2015

New J. Chem., 2016,40, 130-135

Author version available

The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures

X. C. Song, Y. F. Zheng, H. Y. Yin, J. N. Liu and X. D. Ruan, New J. Chem., 2016, 40, 130 DOI: 10.1039/C5NJ01282A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements