Issue 7, 2015

SDRL: a sequence-dependent protein side-chain rotamer library

Abstract

Since the introduction of the first protein side-chain rotamer library (RL) almost half a century ago, RLs have been components of many programs and algorithms in structural bioinformatics. Based on the dependence of side-chain dihedral angles on the local backbone, three types of RLs have been identified: backbone-independent, secondary-structure-dependent and backbone-dependent. In all previous studies, the effect of sequence specificity on side-chain conformational preferences was neglected. In the effort to develop a new class of RLs, we considered that the side-chain conformation of the central residue in each triplet on a protein backbone depends on the sequence of the triplet; therefore, we developed a sequence-dependent rotamer library (SDRL). To accomplish this, 400 possible triplet sequences for 18 natural amino acids as the central residue, which corresponds to 7200 triplet sequences in total, were considered. Searching the set of 11 546 selected PDB entries for the 7200 triplet sequences resulted in 2 364 541 instances occurring for 18 amino acids. Our results show that Leu and Val experience minimal impact from the adjacent residues in adopting side-chain conformations. Cys, Ile, Trp, His, Asp, Met, Glu, Gln, Arg and Lys, on the other hand, adopt their side-chain conformations mostly based on the adjacent residues on the backbone. The remaining residue types were moderately dependent on the adjacent residues. Using the new library, side-chain repacking algorithms can find preferred conformations of each residue more easily than with other backbone-independent RLs.

Graphical abstract: SDRL: a sequence-dependent protein side-chain rotamer library

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2015
Accepted
20 Apr 2015
First published
20 Apr 2015

Mol. BioSyst., 2015,11, 2000-2007

Author version available

SDRL: a sequence-dependent protein side-chain rotamer library

M. Taghizadeh, B. Goliaei and A. Madadkar-Sobhani, Mol. BioSyst., 2015, 11, 2000 DOI: 10.1039/C5MB00057B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements