Jump to main content
Jump to site search

Issue 2, 2015
Previous Article Next Article

Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production

Author affiliations

Abstract

One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

Graphical abstract: Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Aug 2014, accepted on 12 Nov 2014 and first published on 12 Nov 2014


Article type: Paper
DOI: 10.1039/C4GC01612B
Citation: Green Chem., 2015,17, 1145-1158
  • Open access: Creative Commons BY license
  •   Request permissions

    Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production

    L. M. L. Laurens, N. Nagle, R. Davis, N. Sweeney, S. Van Wychen, A. Lowell and P. T. Pienkos, Green Chem., 2015, 17, 1145
    DOI: 10.1039/C4GC01612B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements