Jump to main content
Jump to site search

Issue 11, 2015
Previous Article Next Article

Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

Author affiliations

Abstract

This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

Graphical abstract: Photoreduction of Hg(ii) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

Back to tab navigation

Publication details

The article was received on 02 Jul 2015, accepted on 21 Sep 2015 and first published on 21 Sep 2015


Article type: Paper
DOI: 10.1039/C5EM00305A
Author version available: Download Author version (PDF)
Citation: Environ. Sci.: Processes Impacts, 2015,17, 1892-1903
  •   Request permissions

    Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    J. D. Jeremiason, J. C. Portner, G. R. Aiken, A. J. Hiranaka, M. T. Dvorak, K. T. Tran and D. E. Latch, Environ. Sci.: Processes Impacts, 2015, 17, 1892
    DOI: 10.1039/C5EM00305A

Search articles by author

Spotlight

Advertisements