Jump to main content
Jump to site search

Issue 12, 2015
Previous Article Next Article

Holistic design guidelines for solar hydrogen production by photo-electrochemical routes

Author affiliations

Abstract

Device and system design choices for solar energy conversion and storage approaches require holistic design guidelines which simultaneously respect and optimize technical, economic, sustainability, and operating time constraints. We developed a simulation platform which allows for the calculation of solar-to-hydrogen efficiency, hydrogen price, device manufacture and operation energy demand, and the component degradation and replacement time of photo-electrochemical water splitting devices. Utilizing this platform, we assessed 16 different design types representing all possible combinations of a system: (i) operating with or without irradiation concentration, (ii) utilizing high-performing and high-cost or low-performing but low-cost photoabsorbers, (iii) utilizing high-performing and high-cost or low-performing but low-cost electrocatalysts, and (iv) operating with or without current concentration between the photoabsorber and the electrocatalyst. Our results show that device types exist with a global optimum (a Pareto point), simultaneously maximizing efficiency, while minimizing cost and the energy demand of manufacture and operation. In our examples, these happen to be the device types utilizing high irradiation concentration, as well as expensive photoabsorbers and electrocatalysts. These device types and designs were the most robust to degradation, exhibiting the smallest price sensitivity for increasing degradation rates. Other device types did not show a global optimum, but rather a set of partially optimized designs, i.e. a Pareto front, requiring a compromise and prioritization of either performance, cost, or manufacture and operation energy demand. In our examples, these happen to be the device types using low-cost photoabsorbers. The targeted utilization of irradiation and current concentration predicted that even device types utilizing expensive components can provide competitive solutions to photo-electrochemical water splitting. The quantification of the influence of component degradation on performance allows the suggestion of best practice for device operational time and component replacement. The framework and findings presented here provide holistic design guidelines for photo-electrochemical devices, and support the decision-making process for an integral and practical approach to competitive solar hydrogen production in the future.

Graphical abstract: Holistic design guidelines for solar hydrogen production by photo-electrochemical routes

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Jun 2015, accepted on 02 Oct 2015 and first published on 06 Oct 2015


Article type: Paper
DOI: 10.1039/C5EE01821H
Author version
available:
Download author version (PDF)
Citation: Energy Environ. Sci., 2015,8, 3614-3628
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Holistic design guidelines for solar hydrogen production by photo-electrochemical routes

    M. Dumortier, S. Tembhurne and S. Haussener, Energy Environ. Sci., 2015, 8, 3614
    DOI: 10.1039/C5EE01821H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements