Issue 46, 2015

Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite

Abstract

Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327 K) and tetragonal (165 K < T < 327 K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C–N axis (C4) along with three-fold rotation around the C–N axis (C3), while in the orthorhombic phase (T < 165 K) only C3 rotation is present. At around room temperature, the characteristic relaxation times for the C4 rotation are found to be τC4 ≈ 5 ps while for the C3 rotation τC3 ≈ 1 ps. The T-dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications for understanding the low exciton binding energy and a slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance.

Graphical abstract: Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2015
Accepted
28 Oct 2015
First published
28 Oct 2015

Phys. Chem. Chem. Phys., 2015,17, 31278-31286

Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite

T. Chen, B. J. Foley, B. Ipek, M. Tyagi, J. R. D. Copley, C. M. Brown, J. J. Choi and S. Lee, Phys. Chem. Chem. Phys., 2015, 17, 31278 DOI: 10.1039/C5CP05348J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements