Issue 31, 2015

Phase field modelling of spinodal decomposition in the oil/water/asphaltene system

Abstract

In this paper the quantitative applicability of van der Sman/van der Graaf type Ginzburg–Landau theories of surfactant assisted phase separation [van der Sman et al., Rheol. Acta, 2006, 46, 3] is studied for real systems displaying high surfactant concentrations at the liquid–liquid interface. The model is applied for the water/heptane/asphaltene system (a model of heavy crude oil), for which recent molecular dynamics (MD) simulations provide microscopic data needed to calibrate the theory. A list of general requirements is set up first, which is then followed by analytical calculations of the equilibrium properties of the system, such as the equilibrium liquid densities, the adsorption isotherm and the interfacial tension. Based on the results of these calculations, the model parameters are then determined numerically, yielding a reasonable reproduction of the MD density profiles. The results of time-dependent simulations addressing the dynamical behaviour of the system will also be presented. It will be shown that the competition between the diffusion and hydrodynamic time scales can lead to the formation of an emulsion. We also address the main difficulties and limitations of the theory regarding quantitative modelling of surfactant assisted liquid phase separation.

Graphical abstract: Phase field modelling of spinodal decomposition in the oil/water/asphaltene system

Article information

Article type
Paper
Submitted
22 Apr 2015
Accepted
06 Jul 2015
First published
06 Jul 2015

Phys. Chem. Chem. Phys., 2015,17, 20259-20273

Author version available

Phase field modelling of spinodal decomposition in the oil/water/asphaltene system

G. I. Tóth and B. Kvamme, Phys. Chem. Chem. Phys., 2015, 17, 20259 DOI: 10.1039/C5CP02357B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements