Jump to main content
Jump to site search

Issue 27, 2015
Previous Article Next Article

Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations

Author affiliations

Abstract

We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm−1 at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure–property relationship and in accelerating the materials design of the ionic conductor materials.

Graphical abstract: Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Apr 2015, accepted on 02 Jun 2015 and first published on 02 Jun 2015


Article type: Paper
DOI: 10.1039/C5CP02181B
Author version available: Download Author version (PDF)
Citation: Phys. Chem. Chem. Phys., 2015,17, 18035-18044
  •   Request permissions

    Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations

    X. He and Y. Mo, Phys. Chem. Chem. Phys., 2015, 17, 18035
    DOI: 10.1039/C5CP02181B

Search articles by author

Spotlight

Advertisements