Jump to main content
Jump to site search

Issue 2, 2015
Previous Article Next Article

Flexibility transition and guest-driven reconstruction in a ferroelastic metal–organic framework

Author affiliations

Abstract

The metal–organic framework copper(I) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below Tf = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across Tf. The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(I) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.

Graphical abstract: Flexibility transition and guest-driven reconstruction in a ferroelastic metal–organic framework

Back to tab navigation

Supplementary files

Publication details

The article was received on 29 Jul 2014, accepted on 01 Oct 2014 and first published on 02 Oct 2014


Article type: Paper
DOI: 10.1039/C4CE01572J
Author version
available:
Download author version (PDF)
Citation: CrystEngComm, 2015,17, 361-369
  • Open access: Creative Commons BY license
  •   Request permissions

    Flexibility transition and guest-driven reconstruction in a ferroelastic metal–organic framework

    S. J. Hunt, M. J. Cliffe, J. A. Hill, A. B. Cairns, N. P. Funnell and A. L. Goodwin, CrystEngComm, 2015, 17, 361
    DOI: 10.1039/C4CE01572J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements