Jump to main content
Jump to site search

Issue 43, 2014
Previous Article Next Article

Solution-based DNA-templating of sub-10 nm conductive copper nanowires

Author affiliations

Abstract

Templating the electroless reduction of metal ions on DNA is now an established route to the preparation of nanowires and can be particularly useful for the formation of nanowires in the desirable <10 nm size range. However, different preparation conditions produce nanowires of widely different morphologies and conductivities. We describe a method for the synthesis of Cu nanowires in which electroless metal deposition is carried out on DNA ‘template’ molecules in bulk solution. Though analogous to previous surface-based routes, importantly this now produces conductive material. AFM was used to evaluate the size and morphology of the resulting nanowires; a mean nanowire diameter of 7.1 nm (standard deviation = 4.7 nm) was determined from a statistical analysis of 100 nanowires and the Cu coatings were continuous and smooth. These findings represent a notable improvement in nanowire morphology in comparison to the previous surface-based routes. UV-vis spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to confirm formation of Cu(0) metal takes place during nanowire synthesis, and additional scanning probe microscopy techniques were employed to probe the electrical properties of the nanowires. The nanowires are less conductive [resistivity ∼ 2 Ω cm] than bulk Cu, but much more conductive than nanowires prepared by the analogous method on surface-bound DNA. Using an extension of our thermodynamic model for DNA-templating, we show that the templating process in bulk solution favours the formation of continuous nanowires compared to templating on surface-bound DNA.

Graphical abstract: Solution-based DNA-templating of sub-10 nm conductive copper nanowires

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Jul 2014, accepted on 25 Sep 2014 and first published on 25 Sep 2014


Article type: Paper
DOI: 10.1039/C4TC01632G
Citation: J. Mater. Chem. C, 2014,2, 9265-9273
  • Open access: Creative Commons BY license
  •   Request permissions

    Solution-based DNA-templating of sub-10 nm conductive copper nanowires

    J. Pate, F. Zamora, S. M. D. Watson, N. G. Wright, B. R. Horrocks and A. Houlton, J. Mater. Chem. C, 2014, 2, 9265
    DOI: 10.1039/C4TC01632G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements