Jump to main content
Jump to site search

Issue 1, 2014
Previous Article Next Article

Field induced transitions and interlayer interactions in intermediate smectic phases

Author affiliations

Abstract

A series of liquid crystal mixtures displaying wide three- and four-layer intermediate phases are reported. The mixtures are formed from a selenium-containing antiferroelectric material combined with up to 9% (by weight) of a chiral dopant. We describe physical properties including spontaneous polarization, layer spacing and tilt for mixtures including up to 9% concentration of the chiral dopant. Such measurements offer an insight into the factors that affect the stability of the intermediate smectic phases. However, a quantitative measure of the interlayer interaction strength can be obtained from analysis of field-temperature phase diagrams. Therefore, the field-temperature phase diagrams are also determined in the intermediate phase regime of the mixtures containing up to 5% w/w concentration of the chiral dopant and compared with theoretical predictions. Excellent agreement with the theory is observed for the pure material, though for mixtures with increasing concentrations of chiral dopant, deviations from the theory are recorded, in particular in the nature of the transition from the four-layer structure to the three-layer structure. Quantitative measurements of the interlayer interaction constants are deduced from the gradients of the field thresholds, and the interlayer pairing is found to reduce significantly with an increasing concentration of chiral dopant. An interlayer interaction constant of 147 ± 13 N m−2 K−1 is found in the pure material, reducing to 21 ± 4 N m−2 K−1 in the mixture with concentration of chiral dopant of 5%. Measurement of the interlayer interaction constants from the field-temperature phase diagrams is shown to give a quantitative understanding of the importance of the interlayer interaction, which is only indicated qualitatively by other measurements. Finally, some evidence is presented for an additional field-induced transition observed in temperature regions close to a triple point on the field-temperature phase diagram.

Graphical abstract: Field induced transitions and interlayer interactions in intermediate smectic phases

Back to tab navigation

Publication details

The article was received on 07 Aug 2013, accepted on 04 Nov 2013 and first published on 08 Nov 2013


Article type: Paper
DOI: 10.1039/C3TC31539H
Citation: J. Mater. Chem. C, 2014,2, 147-157
  • Open access: Creative Commons BY license
  •   Request permissions

    Field induced transitions and interlayer interactions in intermediate smectic phases

    L. Johnson, S. Jaradat and H. F. Gleeson, J. Mater. Chem. C, 2014, 2, 147
    DOI: 10.1039/C3TC31539H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements