Jump to main content
Jump to site search

Issue 27, 2014
Previous Article Next Article

Tailoring the material properties of gelatin hydrogels by high energy electron irradiation

Author affiliations

Abstract

Natural hydrogels such as gelatin are highly desirable biomaterials for application in drug delivery, biosensors, bioactuators and extracellular matrix components due to strong biocompatibility and biodegradability. Typically, chemical crosslinkers are used to optimize material properties, often introducing toxic byproducts into the material. In this present work, electron irradiation is employed as a reagent-free crosslinking technique to precisely tailor the viscoelasticity, swelling behavior, thermal stability and structure of gelatin. With increasing electron dose, changes in swelling behavior and rheology indicate increasing amounts of random coils and dangling ends as opposed to helical content, a result confirmed through Fourier transform infrared spectroscopy. Gel fraction, rheology and swelling measurements at 37 °C were used to verify thermal stability in biological conditions. Scanning electron microscopy images of dried gelatin samples support these conclusions by revealing a loss of free volume and apparent order in the fracture patterns. The degree of crosslinking and mesh size are quantified by rubber elasticity theory and the Flory–Rehner equation. Overall, precise control of material properties is demonstrated through the interplay of concentration and irradiation dose, while providing an extensive parameter–property database suitable for optimized synthesis.

Graphical abstract: Tailoring the material properties of gelatin hydrogels by high energy electron irradiation

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Mar 2014, accepted on 15 May 2014 and first published on 06 Jun 2014


Article type: Paper
DOI: 10.1039/C4TB00429A
Citation: J. Mater. Chem. B, 2014,2, 4297-4309
  •   Request permissions

    Tailoring the material properties of gelatin hydrogels by high energy electron irradiation

    E. I. Wisotzki, M. Hennes, C. Schuldt, F. Engert, W. Knolle, U. Decker, J. A. Käs, M. Zink and S. G. Mayr, J. Mater. Chem. B, 2014, 2, 4297
    DOI: 10.1039/C4TB00429A

Search articles by author

Spotlight

Advertisements