Issue 16, 2014

SiC nanofiber reinforced porous ceramic hollow fiber membranes

Abstract

Brittleness is the main obstacle for commercial implementation of ceramic hollow fiber membranes. Here we report the reinforcement of porous alumina hollow fiber membranes by using commercial SiC nanofibers. The SiC reinforced alumina hollow fiber membranes were produced by the polymer-assisted phase inversion method and subsequent removal of the polymer and sintering at high temperatures. The effects of the amounts of SiC nanofibers (2.5–10.0 wt%) on the mechanical strength, microstructure and water flux of the hollow fiber membranes were investigated. The results showed that without addition of SiC nanofibers, the maximum bending strength was about 154 MPa for the porous alumina hollow fiber sintered at 1510 °C. However, the maximum bending strength of the reinforced membrane reached 218 MPa, in which 5 wt% SiC was incorporated and sintered at 1450 °C; in other words, a 40% improvement in bending strength was achieved. After being sintered at 1450 °C, the 5% SiC reinforced membrane exhibits a porosity of 41.7% and a peak pore size of 1.35 μm whereas the pure alumina membrane has a porosity of 37.5% and a peak pore size of 1.25 μm; the former shows a water permeability of 7.99 L m−2 h−1 kPa−1, which is 3.3 times higher than that of the latter. Therefore, the ceramic nanofiber reinforcement is promising for the development of high-performance ceramic hollow fiber membranes for practical applications.

Graphical abstract: SiC nanofiber reinforced porous ceramic hollow fiber membranes

Article information

Article type
Paper
Submitted
22 Dec 2013
Accepted
04 Feb 2014
First published
05 Feb 2014

J. Mater. Chem. A, 2014,2, 5841-5846

SiC nanofiber reinforced porous ceramic hollow fiber membranes

G. Xu, K. Wang, Z. Zhong, C. Chen, P. A. Webley and H. Wang, J. Mater. Chem. A, 2014, 2, 5841 DOI: 10.1039/C3TA15348G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements