Issue 1, 2015

Preparation of single-phase three-component alkaline earth oxide of (BaSrMg)O: a high capacity and thermally stable chemisorbent for oxygen separation

Abstract

This study presents a preparation method for a single-phase three-component alkaline earth oxide of (BaSrMg)O that is a high capacity and thermally stable chemisorbent for oxygen separation based on the redox reaction cycle of BaO + 1/2O2 ↔ BaO2. First, single-phase (BaSr)CO3 is co-precipitated based on the reaction of Ba2+ and Sr2+ with CO32− in a solution, and then transformed to single-phase (BaSrMg)CO3 with the addition of an Mg2+ solution. When varying the reaction conditions, such as the reactant concentrations of Ba2+, Sr2+, Mg2+, and CO32− and the reaction temperature, (Ba0.52Sr0.06Mg0.42)CO3 crystals are identified as the most stable phase. The single-phase (BaSrMg)CO3 is then converted into single-phase (BaSrMg)O by thermal decomposition under an H2 atmosphere at 750 °C. According to a TGA analysis, the chemisorption and desorption of oxygen in (BaSrMg)O are very fast at t80 = 3.9 min and t80 = 14 min, respectively. In addition, the chemisorption capacity of (BaSrMg)O is higher at 2.02 mmol g−1 at 700 °C when compared with the chemisorption capacity of BaO/MgO at 1.75 mmol g−1 (Jin et al., Ind. Eng. Chem. Res., 2005, 44, 2942). (BaSrMg)O is also thermally stable due to the inclusion of Mg. Thus, the chemisorption capacity of (BaSrMg)O is unchanged, even over 10 redox reaction cycles. Additionally, the transient oxygen pressure required for the redox reaction of BaO–BaO2 is shifted from 76 mmHg to 148 mmHg due to the inclusion of Sr in (BaSrMg)O. Consequently, the three component alkaline earth oxide (BaSrMg)O can be a highly effective sorbent for industrial applications to oxygen separation in terms of the process design and operation.

Graphical abstract: Preparation of single-phase three-component alkaline earth oxide of (BaSrMg)O: a high capacity and thermally stable chemisorbent for oxygen separation

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2014
Accepted
28 Oct 2014
First published
28 Oct 2014

J. Mater. Chem. A, 2015,3, 258-265

Author version available

Preparation of single-phase three-component alkaline earth oxide of (BaSrMg)O: a high capacity and thermally stable chemisorbent for oxygen separation

X. Chen, T. Jung, J. Park and W. Kim, J. Mater. Chem. A, 2015, 3, 258 DOI: 10.1039/C4TA05045B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements