Jump to main content
Jump to site search

Issue 44, 2014
Previous Article Next Article

Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance

Author affiliations

Abstract

Four new D–A polymers PIDTT-Q-p, PIDTT-Q-m, PIDTT-QF-p and PIDTT-QF-m, using indacenodithieno[3,2-b]thiophene (IDTT) as an electron-rich unit and quinoxaline (Q) as an electron-deficient unit, were synthesized via a Pd-catalyzed Stille polymerization. The side chains on the pendant phenyl rings of IDTT were varied from the para- to the meta-position, and the effect of the inclusion of fluorine on the quinoxaline unit was simultaneously investigated. The influence on the optical and electrochemical properties, film topography and photovoltaic properties of the four copolymers were thoroughly examined via a range of techniques. The inductively electron-withdrawing properties of the fluorine atoms result in a decrease of the highest occupied molecular orbital (HOMO) energy levels. The effect of meta-substitution on the PIDTT-Q-m polymer leads to good solubility and in turn higher molecular weight. More importantly, it exhibits optimal morphological properties in the PIDTT-Q-m/PC71BM blends. As a result, the corresponding solar cells (ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al) attain the best power conversion efficiency (PCE) of 6.8%. The structure–property correlations demonstrate that the meta-alkyl-phenyl substituted IDTT unit is a promising building block for efficient organic photovoltaic materials. This result also extends our strategy with regards to side chain isomerism of IDTT-based copolymers for enhanced photovoltaic performance.

Graphical abstract: Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance

Back to tab navigation

Publication details

The article was received on 08 Aug 2014, accepted on 30 Sep 2014 and first published on 30 Sep 2014


Article type: Paper
DOI: 10.1039/C4TA04102J
Author version
available:
Download author version (PDF)
Citation: J. Mater. Chem. A, 2014,2, 18988-18997
  • Open access: Creative Commons BY license
  •   Request permissions

    Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene–quinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance

    X. Xu, Z. Li, O. Bäcke, K. Bini, D. I. James, E. Olsson, M. R. Andersson and E. Wang, J. Mater. Chem. A, 2014, 2, 18988
    DOI: 10.1039/C4TA04102J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements