Issue 47, 2014

Structure characterisation method for ideal and non-ideal twisted plywoods

Abstract

The twisted plywood architecture, known as the Bouligand structure, is a ubiquitous biological and synthetic fibrous composite structure, analogous to that of cholesteric liquid crystals. Twisted plywoods can show ideal or non-ideal structures and are formed via equilibrium or non-equilibrium liquid crystal self-assembly processes. A key to the structure characterisation of plywood films is the specification of the local and global helix vector h(x) and pitch p(x) of the cholesteric order. Previous extensive work demonstrated that oblique cuts of the plywood give rise to arc-patterns that depend both on the unknown incision angle α and the unknown pitch p(x), thus making the precise 3D cholesteric reconstruction ambiguous. In this paper we present an efficient method based on geometric modelling and new visualization software that determines unambiguously the cholesteric pitch under spatially homogeneous and heterogeneous conditions. The method is applied to films that display two-pitch and spatially non-homogenous structures, as sometimes observed under equilibrium and non-equilibrium self-assembly. The method can be extended to other biological materials such as cornea-like, cylindrical, and various cuticle plywoods.

Graphical abstract: Structure characterisation method for ideal and non-ideal twisted plywoods

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2014
Accepted
01 Oct 2014
First published
01 Oct 2014

Soft Matter, 2014,10, 9446-9453

Author version available

Structure characterisation method for ideal and non-ideal twisted plywoods

O. F. Aguilar Gutierrez and A. D. Rey, Soft Matter, 2014, 10, 9446 DOI: 10.1039/C4SM01803F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements