Issue 3, 2014

Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field

Abstract

We study the influence of a magnetic field on the biaxial nematic phase of board-like goethite colloids both experimentally and theoretically. Using synchrotron small angle X-ray scattering techniques we find that applying a magnetic field along the main director of the biaxial nematic phase leads to a clear decrease in biaxiality with increasing magnetic field strength. Above a certain magnetic field strength the biaxiality is completely suppressed and the biaxial nematic phase transforms into an ordinary prolate uniaxial nematic phase. In order to interpret the physical mechanism behind this phenomenon, we develop a mean-field theory for the liquid crystal phase behaviour of the suspension. Within this theory the magnetic properties of the particles are modelled by taking into account the effect of both the permanent and the induced magnetic dipoles. The resulting phase diagrams support our experimental findings of the field-induced biaxial nematic to prolate uniaxial nematic transition. They additionally predict that for more plate-like particles, which initially would only display oblate nematic ordering of the shortest axis, the rare biaxial phase can be induced by applying a magnetic field with a carefully chosen field strength, a parameter which can be easily tuned.

Graphical abstract: Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field

Article information

Article type
Paper
Submitted
22 Aug 2013
Accepted
01 Nov 2013
First published
06 Nov 2013

Soft Matter, 2014,10, 446-456

Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field

A. B. G. M. Leferink op Reinink, S. Belli, R. van Roij, M. Dijkstra, A. V. Petukhov and G. J. Vroege, Soft Matter, 2014, 10, 446 DOI: 10.1039/C3SM52242C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements