Issue 10, 2014

Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate

Abstract

Phase ordering over solid substrates is a ubiquitous and important soft material transformation process whose description incorporates wetting, anchoring and phase transition kinetics. In this paper the kinetics of the isotropic-to-nematic isothermal phase transition over a flat solid surface in a growing spherical drop is analyzed based on the Landau–de Gennes Q-tensor order parameter equations. The model, based on a previously derived interface force balance and a newly derived contact line force balance, is shown to be consistent with the generic model of conservative interface and contact line motions. The advancing dynamic contact angle equation is extracted from kinematic compatibility between the moving isotropic–nematic interface and contact line. A tractable surface phase transition kinetic model obtained by focusing on the dominant phase transition and wetting driving forces yields: (i) the constant advancing dynamic contact angle θ, and (ii) the contact line speed as a function of undercooling ΔT. It is shown that as undercooling increases, the surface phase transition mode approaches the bulk phase transition mode, such that θ approaches π. The elastic and wetting parameters that control the phase transformation process are identified and experiments for their determination are defined. These dynamic wetting and surface phase transition results significantly expand existing characterization methods of LC-substrate interfaces based on static phase transition droplet methods.

Graphical abstract: Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate

Article information

Article type
Paper
Submitted
29 Jul 2013
Accepted
25 Nov 2013
First published
17 Jan 2014

Soft Matter, 2014,10, 1611-1620

Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate

A. D. Rey and E. E. Herrera-Valencia, Soft Matter, 2014, 10, 1611 DOI: 10.1039/C3SM52034J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements