Jump to main content
Jump to site search

Issue 6, 2014
Previous Article Next Article

Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(II)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions

Author affiliations

Abstract

The Co(II) complex of the D2h-symmetric amidoporphyrin 3,5-DitBu-IbuPhyrin, [Co(P1)], has proven to be an effective metalloradical catalyst for intermolecular amination of C(sp2)–H bonds of aldehydes with fluoroaryl azides. The [Co(P1)]-catalyzed process can employ aldehydes as the limiting reagents and operate under neutral and nonoxidative conditions, generating nitrogen gas as the only byproduct. The metalloradical aldehydic C–H amination is suitable for different combinations of aldehydes and fluoroaryl azides, producing the corresponding N-fluoroaryl amides in good to excellent yields. A series of mechanistic studies support a stepwise radical mechanism for the Co(II)-catalyzed intermolecular C–H amination.

Graphical abstract: Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(ii)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Mar 2014, accepted on 27 Mar 2014 and first published on 28 Mar 2014


Article type: Edge Article
DOI: 10.1039/C4SC00697F
Citation: Chem. Sci., 2014,5, 2422-2427
  •   Request permissions

    Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(II)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions

    L. Jin, H. Lu, Y. Cui, C. L. Lizardi, T. N. Arzua, L. Wojtas, X. Cui and X. P. Zhang, Chem. Sci., 2014, 5, 2422
    DOI: 10.1039/C4SC00697F

Search articles by author

Spotlight

Advertisements